Soft tissue reconstruction after lower extremity limb-sparing pediatric sarcoma resection

Kevin Shultz1, Nicholas Webster1, Miguel A. Soto-Miranda2, Anas Eid3, Jon P. Ver Halen1

1Division of Plastic Surgery, Scott and White Memorial Hospital, Temple, TX 76508, USA.
2Private Practice, Mexico City 05109, Mexico.
3Division of Plastic and Reconstructive Surgery, Baptist Cancer Center, Memphis, TN 38139, USA.

Correspondence to: Prof. Jon P. Ver Halen, Baylor Scott & White Health, 2401 South 31st St, Temple, TX 76508, USA. E-mail: jverhalen@gmail.com

ABSTRACT

Aim: Limb salvage is the treatment of choice for lower extremity bone sarcomas in children. To date, peers have not described algorithms for soft tissue reconstruction of these defects. This paper is to report a large single center series of lower extremity salvage after sarcoma treatment, with algorithm.

Methods: The authors performed a retrospective review of patients undergoing resection of lower extremity bone sarcomas at a single center over 12 years.

Results: In total, 65 children (29 girls, 36 boys) with a mean age of 13 years (range 2.9-23.3 years) underwent resection of a lower leg sarcoma with limb-salvage. Tumors types included 50 osteosarcomas, and 15 Ewing sarcoma family of tumors. The types of reconstruction utilized included: 34 primary closures, 22 gastrocnemius and soleus flaps, 3 bipedicled flaps, 2 sural artery flaps, 1 pedicled anterolateral thigh flap, 3 pedicled posterior thigh flaps for subsequent above-knee amputations. No free flap based reconstructions were performed. An algorithm for reconstruction of leg defects in the setting of limb-salvage surgery is presented.

Successful limb salvage rate was 95.4%. Limb salvage failed in 3 patients and they required amputation. Finally, 56 patients were able to ambulate without assistance at last follow-up.

Conclusion: The authors present an algorithm for the reconstruction soft tissue after resection of lower extremity bone sarcomas. The use of these techniques helps to decrease complications and maximize function in children with these tumors.

Key words: Pediatric, bone sarcoma, limb-salvage surgery, reconstruction

INTRODUCTION

Primary bone cancers which include osteosarcoma (OS) and the Ewing sarcoma family of tumors (ESFT) represent approximately 2,400 cases or 0.2% of new cancers diagnosed in the United States each year.1,2 Malignant bone tumors account for 6% of neoplasms among children and 57% of those tumors occur in bones of the lower extremities.3

Limb sparing resections have evolved with advances in reconstructive surgery, orthopedic oncologic surgery, medical oncology, and radiation oncology.4-7 Limb-salvaging surgery is now the treatment of choice for...
90% of children. Limb-sparing resections provide the advantage of avoiding amputation but often results in a defect of bone and soft-tissue and function disability. Reconstruction of these defects and mitigating these functional disabilities is critical to achieving limb salvage.[8] Allografts,[9-12] autografts,[13-16] or endoprostheses[17-20] are used to reconstruct bony defects depending on the type and circumstance with much debate in the literature. Soft tissue reconstruction is equally mired in controversy. Some authors describe primary closure,[21-24] while others recommend local flaps[25-28] or free flaps.[29-32] Small patient cohorts, a variety of tumor types, and different treatment protocols, complicate data on this subject.[33-35] The purpose of this study is to report clinical characteristics and management in the largest single-center series of lower extremity limb sparing surgeries after treatment for bone sarcomas in children and adolescents. An algorithm based on this extensive patient population is also presented.

METHODS

Patients and data collection

Our institutional review board approved all components of this study. Children and adolescents treated for lower extremity bone sarcoma at SJCRH during the study period to December 31, 2011. All patients were discussed at our multidisciplinary solid tumor conference before definitive treatment. Analyzed variables included: tumor location; gender; age; tumor size; tumor pathology; last follow-up date; radiotherapy; age at diagnosis; chemotherapy; number and extent of resections; number and site of tumor recurrence(s); pathologic margins of disease; and perioperative and long-term complications. Recurrences were defined as lesions that were biopsy-proven recurrent tumors.

Adjuvant therapy was provided per any protocol under which the patient was enrolled at the time of treatment and as judged appropriate by the care team. External beam radiotherapy was the only technique used for radiation therapy, in the setting of ESFT, with median dose of 58.4 Gy. Chemotherapy drugs most frequently included doxorubicin, cisplatin, methotrexate, and/or Bevacizumab.

Time to local failure and recurrence-free survival were calculated from the time of surgery performed at our institution to the first diagnosis of a local recurrence. Children who did not have a recurrence on or before their date of last contact or death were censored at this date.

RESULTS

Patient and disease characteristics

Eighty-two patients were evaluated for lower extremity bone sarcoma at SJCRH during the study period. Nine patients did not have any surgery, and 8 patients underwent primary amputation, leaving 65 patients included for analysis. With respect to upper leg/thigh tumors, 9 patients had proximal femur tumors; 4 patients had mid-femur tumors; 24 had distal femur tumors; and 4 patients had tumors that involving the entire femur. With regard to leg tumors, 21 patients had proximal tibial tumors; 1 patient had a distal tibial tumor; and 2 patients had proximal fibula tumors. Patients with primary pelvic tumors were excluded from analysis. Patients with mid-shaft tibial tumors were classified either as proximal or distal tibial tumors, depending on the relative location of the primary tumor.

There were 65 primary limb-salvage surgeries. There were an additional 61 procedures during the perioperative/adjuvant therapy timeframe; and 130 long-term procedures (including non-invasive expansions). Excluding non-
Patients at presentation had a median age of 13 years with a range of 2.9 to 23.3 years. Thirty-six were male and 29 were female. All patients had a history of an incisional biopsy of their primary tumor and any metastatic sites. Fifty patients (76.9%), had regional spread and lung metastases. The most common metastatic site at time of presentation was the lung. OS or ESFT was the primary neoplasm in all patients. Patients with metastatic disease underwent resection of the primary tumor, as well as any metastatic sites.

Details of management

A multidisciplinary solid tumor board met to discuss each case before the initiation of treatment. All children underwent a curative surgical resection (n = 65) [Table 2]. Only 1 child needed additional resection for local control of the primary tumor [this patient underwent above-knee amputations (AKA) secondary to local recurrence]. For patients presenting with metastatic disease, treatment included resection of the primary tumor, as well as any metastatic sites.

The median bone and soft tissue defect volume was 799 cm³ with a range of 197 to 3,697 cm³. Osteotomy length had a median length of 23.7 cm with a range of 8.5 to 62.5 cm. The longest specimen in the series was a total femur tumor, including resection from the femoral head to mid-tibia. At the time of the index procedure, soft tissue reconstruction was performed with primary closure in 45 patients. Gastrocnemius or soleus flaps with patellar tendon reconstruction were most often utilized in proximal- and mid-femur tumors, and bipedicled flap was most often utilized in distal tibial tumors. Patients with metastatic disease underwent resection of the primary tumor, as well as any metastatic sites.

Pathological margin status was evaluated for all resections. Sixty-two cases had negative margins (R0); 1 patient had microscopic margins positive at the time of resection (R1); and 2 patients had macroscopic positive tumor margins at the time of resection (R2). The incidence of an R0 margin was not significantly different between patients who had local (48 of 51, 94.1%), locoregional (2 of 2, 100%), or metastatic disease at the time of presentation (11 of 12, 91.7%) (P = 0.94, Pearson’s chi-squared test). Sixty-two of the 65 children received systemic chemotherapy at their treatment. Fifty-six received preoperative chemotherapy, and 59 patients received postoperative chemotherapy. Five patients underwent for ESFT with a mean dose 58.4 Gy.

Bone reconstruction consisted of modular endoprostheses in 42 patients; allograft in 7 patients; bone transport rod in 3 patients; expandible endoprostheses (Repiphysis) in 12 patients; and 1 patient had no bone reconstruction (for fibula-only resection) [Figures 4 and 5]. Details of soft tissue reconstruction are discussed below.
Management of complications during cancer treatment

We divided complications into three major categories based on how they were temporally related to surgery. The initial post operative period of 30 days, followed by the period they were undergoing adjuvant therapy and finally after the completion of their therapy. Then they were further subdivided into patients with soft-tissue, implant and long term functional complications.

Eighteen of 65 patients had an initial 30-day postoperative complication. Four patients had cellulitis treated with oral or intravenous antibiotics; 5 patients had a nonoperative wound complication; 7 patients had a deep wound dehiscence requiring operative debridement; and 3 suffered a popliteal artery thrombosis, 1 of these had a successful thrombectomy, 2 resulted in AKA (1 patient had multiple complications). No patients had bone or implant related complications during the 30-day perioperative period. All patients were able to successfully resume planned adjuvant therapy postoperatively despite any immediate complications. A single patient had a protocol alteration due to surgical pathology, which found a low-grade OS and did not require further adjuvant therapy as planned.

Twenty-eight patients did not have any complications during their treatment period. Sixteen patients had a nonoperative minor wound complication (e.g. cellulitis, superficial wound dehiscence/eschar). Twenty-nine patients had an operative complication, requiring a total of 52 procedures. Of these 52 procedures, 38 (73.1%) were soft tissue complications requiring surgery; 14 (26.9%) were bone/implant-related complications. There were an additional 11 metastatectomies (not counted as complications). Of 29 patients requiring surgery during the adjuvant therapy period, adjuvant therapy was delayed in 26; 2 patients did not delay therapy; and 1 patient did not require adjuvant therapy since the limb was amputated secondary to vascular

WITHDRAWN - December 27, 2016

This article has been withdrawn by the authors. The same patient data are being used for a case series review by other senior researchers, not listed in this article. The authors state that this does not affect the overall conclusions of the study.
injury. During the combined 30-day postoperative and adjuvant therapy treatment periods, soft tissue closure was achieved with primary closure in 37 cases. Two cases required bipedicled lower leg flap; 1 case required sural artery flap; 1 pedicled anterolateral thigh (ALT) flap; 2 pedicled gastrocnemius flaps; 2 pedicled posterior thigh flaps (for amputations); and split thickness skin graft was utilized in 3 cases. No patients required free flap closure.

Recurrence and overall survival
Median follow-up was 37 months with a range of 6 months to 6.8 years. After conclusion of the study, 22 of the 65 patients did not have any further surgical complications. The 43 remaining patients had a total of 130 procedures during the post-adjuvant therapy period. Endoprosthesis expansions were performed utilizing a non-invasive Repiphysis device, and were not counted
as additional procedures. Fourteen procedures (10.7%) were for soft tissue/wound healing issues necessitating operative intervention; 51 (39.2%) were implant/bone-related (not including implant expansions, as noted above); 1 AKA secondary to local recurrence; and 1 neuroma resection secondary to phantom limb pain after AKA. With regard to soft tissue closure, 1 posterior thigh flap was used after an AKA; and primary closure was utilized in the remaining 65 cases. Table 3 reports the final reconstruction technique utilized for patients, as recorded at the time of their last follow-up.

At the conclusion of the period being evaluated 54 children had successfully completed their oncologic therapy. A remaining 8 were still receiving therapy and an addition three failed to complete their full course. At the most recent follow-up available, 43 had no evidence of any disease; 9 patients had stable disease; 4 patients had progressive disease; 6 patients had died of their disease; and 3 patients had been lost to follow up. With regard to recurrences, there was one local recurrence (as described above); one locoregional recurrence; 6 lung metastases; 3 spinal metastases; and 1 each of kidney, chest wall, and skull metastases. The median time to a recurrence was 13 months with a range of 2 months to 3.8 years. At the time of last available follow-up, 3 patients had had amputations; 56 patients were able to ambulate without any assistance; 7 patients required an assist device (e.g. brace, ankle foot orthosis, crutch, prosthesis); and 2 patients were completely non-ambulatory.

DISCUSSION

Limb-sparing surgery is now the standard of care for primary bone tumors, especially in the pediatric population. Wide en bloc resection of bone and soft tissue is needed to avoid local recurrence and

Table 3: Long term outcomes (n = 65)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Median (range), or n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambulatory status</td>
<td></td>
</tr>
<tr>
<td>Independent ambulation</td>
<td>56 (86.1)</td>
</tr>
<tr>
<td>Ambulate with assist device</td>
<td>7 (10.8)</td>
</tr>
<tr>
<td>Non-ambulatory</td>
<td>2 (3.1)</td>
</tr>
<tr>
<td>Follow-up</td>
<td></td>
</tr>
<tr>
<td>Disease-free survival, years</td>
<td>3.1 (0.5-6.8)</td>
</tr>
<tr>
<td>Time to recurrence, months</td>
<td>13 (2-46)</td>
</tr>
<tr>
<td>Disease status at last follow-up</td>
<td></td>
</tr>
<tr>
<td>No evidence of disease</td>
<td>43 (66.2)</td>
</tr>
<tr>
<td>Stable disease</td>
<td>9 (13.8)</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>4 (6.2)</td>
</tr>
<tr>
<td>Died from disease</td>
<td>6 (9.2)</td>
</tr>
<tr>
<td>Lost to follow-up</td>
<td>3 (4.6)</td>
</tr>
<tr>
<td>Therapy status at last follow-up</td>
<td></td>
</tr>
<tr>
<td>Completed therapy</td>
<td>54* (83.1)</td>
</tr>
<tr>
<td>On therapy</td>
<td>8 (12.3)</td>
</tr>
<tr>
<td>Failed therapy</td>
<td>3 (4.6)</td>
</tr>
<tr>
<td>Limb status</td>
<td></td>
</tr>
<tr>
<td>Salvaged</td>
<td>62 (95.4)</td>
</tr>
<tr>
<td>Amputation</td>
<td>3 (4.6)</td>
</tr>
<tr>
<td>Implant malfunctions</td>
<td>26 (40)</td>
</tr>
</tbody>
</table>

*One patient did not require any adjuvant therapy.
Three patients who underwent hinged knee endoprostheses suffered popliteal artery thrombosis, which resulted in 2 AKAs. These cases were reviewed and are thought to be most likely due to a traction injury that occurred during implant placement. This phenomenon has been described in the literature and we now place these implants with direct visualization of the neurovascular bundle. In addition care is taken to prevent excess traction on the lower leg, with judicious use of a tourniquet. Vascular exams are also performed preoperatively, intraoperatively, and postoperatively. Aside from these events, perioperative complications were acceptable with only 10 of 65 patients requiring operative intervention. Most wound complications could be managed with a bedside debridement and negative pressure wound therapy.

Wound complications were common during the period when patients received adjuvant therapy. Our institutional protocols for these tumors feature early, aggressive multi-agent adjuvant chemotherapy. Experience during this treatment period has been especially instructive. Wound complications that were

Figure 6: Algorithm for lower extremity reconstruction after composite resection for bone sarcoma. Defects of the proximal and mid-femur were successfully closed with primary closure in the majority of cases; backup options included pedicled ALT, and rectus abdominis flaps, and free flaps. Defects of the distal femur and proximal tibia were successfully closed with pedicled gastrocnemius flaps, often with inclusion of the soleus muscle. Backup options include distally-based pedicled ALT flaps, anterior bipedicled fasciocutaneous flaps, pedicled sural artery flaps, and free flaps. Defects of the mid- to distal tibia were successfully closed with primary closure in the majority of cases. Backup options include pedicled gastrocnemius and soleus flaps, propeller or keystone flaps, and free flaps. ALT: anterolateral thigh.

Three patients who underwent hinged knee endoprostheses suffered popliteal artery thrombosis, which resulted in 2 AKAs. These cases were reviewed and are thought to be most likely due to a traction injury that occurred during implant placement. This phenomenon has been described in the literature and we now place these implants with direct visualization of the neurovascular bundle. In addition care is taken to prevent excess traction on the lower leg, with judicious use of a tourniquet. Vascular exams are also performed preoperatively, intraoperatively, and postoperatively. Aside from these events, perioperative complications were acceptable with only 10 of 65 patients requiring operative intervention. Most wound complications could be managed with a bedside debridement and negative pressure wound therapy.

Wound complications were common during the period when patients received adjuvant therapy. Our institutional protocols for these tumors feature early, aggressive multi-agent adjuvant chemotherapy. Experience during this treatment period has been especially instructive. Wound complications that were

Figure 6: Algorithm for lower extremity reconstruction after composite resection for bone sarcoma. Defects of the proximal and mid-femur were successfully closed with primary closure in the majority of cases; backup options included pedicled ALT, and rectus abdominis flaps, and free flaps. Defects of the distal femur and proximal tibia were successfully closed with pedicled gastrocnemius flaps, often with inclusion of the soleus muscle. Backup options include distally-based pedicled ALT flaps, anterior bipedicled fasciocutaneous flaps, pedicled sural artery flaps, and free flaps. Defects of the mid- to distal tibia were successfully closed with primary closure in the majority of cases. Backup options include pedicled gastrocnemius and soleus flaps, propeller or keystone flaps, and free flaps. ALT: anterolateral thigh.
adequate in our study. Other options include keystone flaps, pedicled flaps from the distal leg and foot, and free flaps.[30,40] An algorithm outlining our approach to soft tissue coverage is shown in Figure 6.

One novel finding of our study pertains to the timing of complication types, and need for reoperation. We observed that early complications were usually soft tissue related, whereas late complications were usually related to bone reconstruction. Specifically, in the 30-day postoperative period, 10 of 10 operative complications were soft-tissue related; in the adjuvant therapy period, 38 of 52 were soft tissue related, and 11 of 52 were implant related; and in the post-adjuvant period, 14 of 130 were soft tissue related, while 51 of 130 were implant related (chi-square test, $P < 0.001$).

Based on these findings, we propose 2 primary soft-tissue reconstructive goals: facilitation of adjuvant therapy, and the ability to re-operate for late implant-related issues.

In many patients, we use unique implants that obviate multiple operating room trips for expansion, including Repiphysis, which is an expandable endoprosthesis in addition to the Phoenix bone transport intramedullary rod.[26-28] These devices are also less expensive than their standard counterparts, decrease the need for subsequent surgeries by allowing for non-invasive bone lengthening. A more detailed analysis of these devices is forthcoming.

From the perspective of their oncologic treatment outcomes were superb with a single local recurrence. Nearly all attained excellent functional results including ambulation with full active and passive range of motion of the ankle, hip and knee joints.

In conclusion, lower extremity limb sparing surgery is difficult, demanding extensive bone, tendon, and soft tissue reconstruction. We have found a number of techniques for soft tissue reconstruction that ultimately result in successful limb salvage in nearly all patients. Early complications are usually soft tissue related, and late complications are usually related to bone reconstruction. Thus, operative goals should provide for soft tissue reconstructive options that allow for immediate continuation of adjuvant therapy, the potential for long-term implant revision, and the optimization of oncologic safety and soft tissue integrity. Together, these options provide dependable bony and soft tissue reconstruction essential for successful limb salvage surgery.

Financial support and sponsorship

None.

Conflicts of interest

This article has been withdrawn by the authors. The same patient data are being used for a case series review by other senior researchers, not listed in this article. The authors state that this does not affect the overall conclusions of the study.

REFERENCES

9. Germain MA, Duboussel J, Mascard E, Kalifa C. Vascularized...
peroneal reconstruction after block resection of tumors or congenital malformations of the upper limb in children]. Bull Acad Natl Med 2000;184:1671-84; discussion 1685-6. (in French)

WITHDRAWN - December 27, 2016

This article has been withdrawn by the authors. The same patient data are being used for a case series review by other senior researchers, not listed in this article. The authors state that this does not affect the overall conclusions of the study.